skip to main content


Search for: All records

Creators/Authors contains: "Ezzeddine, Rana"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We present a comprehensive analysis of the detailed chemical abundances for a sample of 11 metal-poor, very metal-poor, and extremely metal-poor stars ([Fe/H] = −1.65 to [Fe/H]  = −3.0) as part of the HESP-GOMPA (Galactic survey Of Metal Poor stArs) survey. The abundance determinations encompass a range of elements, including C, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, and Ba, with a subset of the brighter objects allowing for the measurement of additional key elements. Notably, the abundance analysis of a relatively bright highly r-process-enhanced (r-II) star (SDSS J0019+3141) exhibits a predominantly main r-process signature and variations in the lighter r-process elements. Moreover, successful measurements of thorium in this star facilitate stellar age determinations. We find a consistent odd–even nucleosynthesis pattern in these stars, aligning with expectations for their respective metallicity levels, thus implicating Type II supernovae as potential progenitors. From the interplay between the light and heavy r-process elements, we infer a diminishing relative production of light r-process elements with increasing Type II supernova contributions, challenging the notion that Type II supernovae are the primary source of these light r-process elements in the early Milky Way. A chemodynamical analysis based on Gaia astrometric data and our derived abundances indicates that all but one of our program stars are likely to be of accreted origin. Additionally, our examination of α-poor stars underscores the occurrence of an early accretion event from a satellite on a prograde orbit, similar to that of the Galactic disc.

     
    more » « less
  2. Abstract Precise fundamental atmospheric stellar parameters and abundance determination of individual elements in stars are important for all stellar population studies. Non–local thermodynamic equilibrium (non-LTE; hereafter NLTE) models are often important for such high precision, however, can be computationally complex and expensive, which renders the models less utilized in spectroscopic analyses. To alleviate the computational burden of such models, we developed a robust 1D, NLTE fundamental atmospheric stellar parameter derivation tool, LOTUS , to determine the effective temperature T eff , surface gravity log g , metallicity [Fe/H], and microturbulent velocity v mic for FGK-type stars, from equivalent width (EW) measurements of Fe i and Fe ii lines. We utilize a generalized curve of growth method to take into account the EW dependencies of each Fe i and Fe ii line on the corresponding atmospheric stellar parameters. A global differential evolution optimization algorithm is then used to derive the fundamental parameters. Additionally, LOTUS can determine precise uncertainties for each stellar parameter using a Markov Chain Monte Carlo algorithm. We test and apply LOTUS on a sample of benchmark stars, as well as stars with available asteroseismic surface gravities from the K2 survey, and metal-poor stars from the Gaia-ESO and R -Process Alliance surveys. We find very good agreement between our NLTE-derived parameters in LOTUS to nonspectroscopic values on average within T eff = ±30 K, and log g = ±0.10 dex for benchmark stars. We provide open access of our code, as well as of the interpolated precomputed NLTE EW grids available on Github (the software is available on GitHub 3 3 https://github.com/Li-Yangyang/LOTUS under an MIT License, and version 0.1.1 (as the persistent version) is archived in Zenodo) and documentation with working examples on the Readthedocs book. 
    more » « less
  3. Abstract

    The ages of the oldest stars shed light on the birth, chemical enrichment, and chemical evolution of the universe. Nucleocosmochronometry provides an avenue to determining the ages of these stars independent from stellar-evolution models. The uranium abundance, which can be determined for metal-poorr-process enhanced (RPE) stars, has been known to constitute one of the most robust chronometers known. So far, U abundance determination has used asingleUiiline atλ3859 Å. Consequently, U abundance has been reliably determined for only five RPE stars. Here, we present the first homogeneous U abundance analysis of four RPE stars using two novel Uiilines atλ4050 Å andλ4090 Å, in addition to the canonicalλ3859 Å line. We find that the Uiilines atλ4050 Å andλ4090 Å are reliable and render U abundances in agreement with theλ3859 U abundance, for all of the stars. We, thus, determine revised U abundances for RPE stars, 2MASS J09544277+5246414, RAVE J203843.2–002333, HE 1523–0901, and CS 31082–001, using multiple Uiilines. We also provide nucleocosmochronometric ages of these stars based on the newly derived U, Th, and Eu abundances. The results of this study open up a new avenue to reliably and homogeneously determine U abundance for a significantly larger number of RPE stars. This will, in turn, enable robust constraints on the nucleocosmochronometric ages of RPE stars, which can be applied to understand the chemical enrichment and evolution in the early universe, especially ofr-process elements.

     
    more » « less
  4. ABSTRACT

    We present a high-resolution (R ∼ 35 000), high signal-to-noise (S/N = 350) Magellan/MIKE spectrum of the bright extremely metal-poor star 2MASS J1808−5104. We find [Fe/H] = −4.01 (spectroscopic LTE stellar parameters), [Fe/H] = −3.8 (photometric stellar parameters), and [Fe/H] = −3.7 (spectroscopic NLTE stellar parameters). We measured a carbon-to-iron ratio of [C/Fe] = 0.38 from the CH G-band. J1808−5104 is thus not carbon-enhanced, contrary to many other stars with similarly low-iron abundances. We also determine, for the first time, a barium abundance ([Ba/Fe] = −0.78), and obtain a significantly reduced upper limit for the nitrogen abundance ([N/Fe] < −0.2). For its [Ba/Fe] abundance, J1808−5104 has a lower [Sr/Ba] ratio compared to other stars, consistent with behaviour of stars in ultra-faint dwarf galaxies. We also fit the abundance pattern of J1808−5104 with nucleosynthesis yields from a grid of Population III supernova models. There is a good fit to the abundance pattern that suggests J1808−5104 originated from gas enriched by a single massive supernova with a high explosion energy of E = 10 × 1051 erg and a progenitor stellar mass of M = 29.5 M⊙. Interestingly, J1808−5104 is a member of the Galactic thin disc, as confirmed by our detailed kinematic analysis and calculated stellar actions and velocities. Finally, we also established the orbital history of J1808−5104 using our time-dependent Galactic potential the ORIENT. J1808−5104 appears to have a stable quasi-circular orbit and been largely confined to the thin disc. This unique orbital history, the star’s very old age (∼13.5 Gyr), and the low [C/Fe] and [Sr/Ba] ratios suggest that J1808−5104 may have formed at the earliest epoch of the hierarchical assembly of the Milky Way, and it is most likely associated with the primordial thin disc.

     
    more » « less
  5. Abstract We present a nearly complete rapid neutron-capture process ( r -process) chemical inventory of the metal-poor ([Fe/H] = −1.46 ± 0.10) r -process-enhanced ([Eu/Fe] = +1.32 ± 0.08) halo star HD 222925. This abundance set is the most complete for any object beyond the solar system, with a total of 63 metals detected and seven with upper limits. It comprises 42 elements from 31 ≤ Z ≤ 90, including elements rarely detected in r -process-enhanced stars, such as Ga, Ge, As, Se, Cd, In, Sn, Sb, Te, W, Re, Os, Ir, Pt, and Au. We derive these abundances from an analysis of 404 absorption lines in ultraviolet spectra collected using the Space Telescope Imaging Spectrograph on the Hubble Space Telescope and previously analyzed optical spectra. A series of appendices discusses the atomic data and quality of fits for these lines. The r -process elements from Ba to Pb, including all elements at the third r -process peak, exhibit remarkable agreement with the solar r -process residuals, with a standard deviation of the differences of only 0.08 dex (17%). In contrast, deviations among the lighter elements from Ga to Te span nearly 1.4 dex, and they show distinct trends from Ga to Se, Nb through Cd, and In through Te. The r -process contribution to Ga, Ge, and As is small, and Se is the lightest element whose production is dominated by the r -process. The lanthanide fraction, log X La = −1.39 ± 0.09, is typical for r -process-enhanced stars and higher than that of the kilonova from the GW170817 neutron-star merger event. We advocate adopting this pattern as an alternative to the solar r -process-element residuals when confronting future theoretical models of heavy-element nucleosynthesis with observations. 
    more » « less
  6. Abstract

    We present new observational benchmarks of rapid neutron-capture process (r-process) nucleosynthesis for elements at and between the first (A∼ 80) and second (A∼ 130) peaks. Our analysis is based on archival ultraviolet and optical spectroscopy of eight metal-poor stars with Se (Z= 34) or Te (Z= 52) detections, whoser-process enhancement varies by more than a factor of 30 (−0.22 ≤ [Eu/Fe] ≤ +1.32). We calculate ratios among the abundances of Se, Sr through Mo (38 ≤Z≤ 42), and Te. These benchmarks may offer a new empirical alternative to the predicted solar systemr-process residual pattern. The Te abundances in these stars correlate more closely with the lighterr-process elements than the heavier ones, contradicting and superseding previous findings. The small star-to-star dispersion among the abundances of Se, Sr, Y, Zr, Nb, Mo, and Te (≤0.13 dex, or 26%) matches that observed among the abundances of the lanthanides and thirdr-process-peak elements. The concept ofr-process universality that is recognized among the lanthanide and third-peak elements inr-process-enhanced stars may also apply to Se, Sr, Y, Zr, Nb, Mo, and Te, provided the overall abundances of the lighterr-process elements are scaled independently of the heavier ones. The abundance behavior of the elements Ru through Sn (44 ≤Z≤ 50) requires further study. Our results suggest that at least one relatively common source in the early Universe produced a consistent abundance pattern among some elements spanning the first and secondr-process peaks.

     
    more » « less
  7. null (Ed.)